Description: This course will address the following questions: What makes an author “major” or more important than others? How do we decide who the “major” American authors are? What characteristics of a literary work make it influential over time? How are American myths created, challenged, and reimagined by the authors in this course? What is American literature? What are the distinctive voices and styles in American literature? How do social and political issues influence the American canon?

Students will be encouraged to think critically and complexly about how to answer these questions. While it is difficult to say what makes a particular work of literature “good” or “bad,” we can develop arguments about which works and authors deserve “major” status and lasting recognition. This has been done in different ways over the years as the “canon” of great American writers has evolved.

The course will begin with an essay that introduces students to the history of the American canon and shows how it has evolved significantly in recent decades. Students will then read the work of a variety of authors currently in the “canon.” The course will end with students preparing a final project that makes an argument for the inclusion of a particular writer in the canon, applying standards of the student’s selection.

Course Objectives: After successfully completing this course, students will be able to:

- Demonstrate a familiarity with key American authors and their texts.
- Evaluate key texts in American literature, explaining what makes them “major.”
- Construct an effective argument for why an author deserves to remain in the “canon” or be included in it.

How this course works:

- You will complete assignments on Tuesdays and Fridays during the term. Each of these class periods approximates a week of classes during the Fall or Spring term.
- The course will be conducted entirely in Moodle.
- Each “topic” in our Moodle course will correspond to a class period. The due date for the assignments listed in each topic module will be clearly stated.
- Each topic module will include readings from the required texts, which may also be supplemented by other materials available online, such as additional readings, websites, or videos.
- Once you have completed the assigned activities, you will take the related quiz(es).
- Then you will follow or participate in the forum discussion for that topic. 6 students are assigned to each discussion forum. (Everyone is assigned to two forums). Those not
assigned to participate in that topic’s discussion may participate in the forum for extra credit. But everyone should follow the discussion, as this will constitute the “class discussion” for the course.

Class Schedule:
Specific assignments will be posted under each “Topic” module in Moodle. Below are the due dates for each module as well as the written assignments.
June 2-5: Welcome module
Friday, June 6: Topic #1
Tuesday, June 10, Topic #2
Friday, June 13, Topic #3
Tuesday, June 17, Topic #4
Friday, June 20, Topic #5
Tuesday, June 24, Midterm Exam
Friday, June 27, Topic #6
Tuesday, July 1, Topic #7
Friday, July 4 (No Class)
Tuesday, July 8, Topic #8
Friday, July 11, Topic #9
Tuesday, July 15, Topic #10
Friday, July 18, Topic #11
Tuesday, July 22, Topic #12
Friday, July 24, Final Exam
Tuesday, July 29, Final Projects due by noon

Discussion Forums:
These will be set up for each topic module. 6 students will be assigned to participate in each forum. (It is too much to have 30 students participating in each forum, so I will divide you up—see below.) I will post questions that you can use to begin your discussion, which can start as early as soon as the previous topic is closed, but must be completed by midnight of the due date for that topic (Tuesday or Friday at midnight). Because this is a “discussion” and not merely a place to post your responses, you should participate in the discussion early and then check back over the course of the discussion to keep participating—by asking each other questions, answering follow-up questions from myself and other classmates, etc.

In addition to addressing the questions I pose, you are encouraged to bring up topics of interest to you and ask your own questions and respond to each other. I will be participating as well, but in the role of more of a guide. I want you all to explore your own thoughts with each other rather than relying on me to provide “the answers.” When studying literature, there are not right answers to questions so much as more or less viable interpretations. For instance, I may ask you to consider how a text relates to a previous text we read, or why a given text is considered a class American work of literature. There are many ways to approach those questions, and I hope that you will explore them together.

Although 6 students will be required to participate in each forum, other students are encouraged to participate as well. I will keep track of non-required participation in forums and will use this information when calculating final grades. Although there is no formula for calculating this extra credit, a student who has participated in unrequired forums can get their
forum grade moved up 1-3 points (on a 10-point scale; grade can go over 10 if there is sufficient extra credit). (The forum grade counts for 20% of your final grade.)

All students should read the forums, even if they do not participate in them. Forum discussions are meant to approximate class discussions. This means that the forums will be the primary place where the course content will be discussed. In order to do well on the midterm and final, each student will need to follow the forums.

Participation in forums will be graded based on quality and quantity. This means that the effort put into responses and questions will be considered, as well as the thoughtfulness of the comments. Try to avoid merely personal responses like “I liked this story because . . .” or “This story was weird because . . .” or “The grandmother reminded me of this lady who lives down the street . . .”

More substantive responses would be something like the following: “The main character reminded me a bit of the Faith in Hawthorne’s ‘Young Goodman Brown’ because . . .” or “Why did Hawthorne name Goodman Brown’s wife ‘Faith’ and put pink ribbons on her? Was it because . . . ?” In the first example, the student is not only making a statement but backing it up with explanation (and, hopefully, evidence from the text). And in the second, the student does not merely ask a question but attempts to answer it.

Discussion Forum Schedule:
Below is the schedule for forum participation. If you will not be able to participate on a day indicated, please let me know right away so I can make adjustments. Only one request for a change per student. And please only request a change if there is a serious conflict. (Too many requests for changes will be too much to manage.)

Adrah, Suad (6/6; 6/27)
Anderson, Sean (6/6; 6/27)
Drennan, Emily (6/6; 6/27)
Evans, Melissa (6/6; 6/27)
Fabacher, Matthew (6/6; 6/27)
Gagliano, Louis (6/6; 6/27)
Henderson, Mark (6/10; 7/1)
Jackson, Lonnie (6/10; 7/1)
Jones, Amber (6/10; 7/1)
Kim, Ja (6/10; 7/1)
Labrzycki, Ariane (6/10; 7/1)
Marocco, Samantha (6/10; 7/1)
Menier, Joshua (6/13; 7/8)
Miller, Christi (6/13; 7/8)
Miller, Heather (6/13; 7/8)
Morris, Jeffrey (6/13; 7/8)
Mulkey, Samantha (6/13; 7/8)
Ramos, Philip (6/13; 7/8)
Raymond, Katherine (6/17; 7/11)
Rosenbohm, Juleigh (6/17; 7/11)
Salcedo, Abigail (6/17; 7/11)
Thomas, Janelle (6/17; 7/11)
Truxillo, Stephen (6/17; 7/11)
Turner, Bobby (6/17; 7/11)
Vandusen, Kristina (6/20; 7/15)
Wattigney, Lance (6/20; 7/15)
Williams, Austen (6/20; 7/15)
Wolf, Tiffany (6/20; 7/15)
Wood, Peter (6/20; 7/15)
Young, Katherine (6/20; 7/15)

Attendance Policy: Class attendance will be determined by the quizzes. There is a quiz for each class (Tuesday and Friday). Students who fail to take more than two quizzes will be docked 5% of their final grade for the course for each additional missed quiz.

Late work will not be accepted. All due dates are final, except in extreme circumstances, such as hospitalization, or in the case of Moodle unavailability. If Moodle experiences an outage when an assignment is due, I will notify students of the revised due date.

Grades: Final grades will be determined as follows:
Quizzes: 20% (average of individual quiz grades)
Discussion Forums: 20% (average of 2 grades + any extra credit)
Midterm Exam: 20%
Final Exam: 20%
Final Project: 20%

Letter grades correspond to the following numerical scale: A+=100, A=95, A-=92, A-/B+=90, B+=88, B=85, B-=82, B-/C+=80, C+=78, C=75, C-=72, C-/D+=70, D+=68, D=65, D-=62, F=50.
A grade of "C" indicates competent completion of the assignment. Grades of "A" and "B" indicate varying levels of distinguished performance beyond competency, while grades of "D" and "F" indicate varying levels of failure to address the assignment competently.

Written Assignments:
The Midterm Exam will involve short answer questions that will allow students to demonstrate the knowledge they have gathered about the authors we have been reading as well as make connections between texts.
The Final Exam will also have short answer questions and a longer essay question that will ask students to reflect on what they learned over the term about what makes a “major” American writer.
For the Final Project, students can choose to write a traditional paper (4-5 pages) or create nontraditional project (such as Powerpoint or Prezi) that will explain why one author they have chosen from our textbook (the Norton Anthology) deserves to be included in the canon of American literature, in other words, why he/she is a “major” American writer. This should be an author we have not read for this class. You should articulate up front the specific criteria you are using to determine an author’s “major” status. We will be discussing such criteria and applying them to the authors we are reading throughout the term.
In order to effectively develop your case for your author’s major status, some outside research may be required. You can use scholarly sources accessed through the library’s databases
or reviews of the author’s works in newspapers or magazines. Do not use purely online sources, however, such as websites or blogs, although you may access print sources in online databases through the library. For more information about how to locate appropriate sources, see our library’s guide to conducting research in English: http://libguides.uno.edu/content.php?pid=105237&sid=791604.

Sources must be cited accurately. Unacknowledged, uncited use of sources is plagiarism and will result in a score of “0” for the assignment. Incorrect or inadequate citing of sources will result in a lowering of 10 points, on a 100-point scale, of assignment grade. See here for information on how to cite sources correctly: https://owl.english.purdue.edu/owl/resource/747/01/ (see list in left column for how to cite specific types of sources.)

A note about non-traditional projects: make sure they are substantive and not merely lists of ideas. You should provide supporting materials that develop your ideas as outlined in your project.

Make sure that you fully understand the written assignments. Read the guide to “Writing About Literature” in the Welcome section of our Moodle site. And seek help if you need it! E-mail me to discuss the assignments. Or go to the Writing Center (LA 334; 280-7054; http://www.uno.edu/lrc/writingcenter/index.aspx) and go over your draft with a tutor (bring the description of the assignment). If you don’t feel comfortable with your ability to complete the written assignments, then do something about it—before they are due! You won’t have the opportunity to revise.

Academic integrity is fundamental to the process of learning and evaluating academic performance. Academic dishonesty will not be tolerated. Academic dishonesty includes, but is not limited to, the following: cheating, plagiarism, tampering with academic records and examinations, falsifying identity, and being an accessory to acts of academic dishonesty. Refer to the UNO Judicial Code for further information. The Code is available online at http://www.studentaffairs.uno.edu/accountability.cfm. Plagiarism will result in a score of “0” for the assignment.

To ensure academic integrity, all students enrolled in distance learning courses at the University of New Orleans may be required to participate in additional student identification procedures. At the discretion of the faculty member teaching the course, these measures may include on-campus proctored examinations, off-site or online proctored examinations, or other reasonable measures to ensure student identity. Authentication measures for this course are identified below and any fees associated are the responsibility of the student:

The midterm exam (60 min) and the final exam (120 min) will be proctored online. The University of New Orleans partners with Proctor U, a live, online proctoring service that allows students to complete exams from any location using a computer, webcam, and reliable internet connection. The schedule of Proctor U fees can be found on our online testing page at http://www.uno.edu/globaluno/online-testing.aspx and more information about Proctor U can be found on our UNO portal page at http://www.proctoru.com/portal/uno. Please note that proctored exams should be schedule with Proctor U at least 72 hours in advance to avoid extra fees.
Disabilities: Students who qualify for services will receive the academic modifications for which they are legally entitled. It is the responsibility of the student to register with the Office of Disability Services (http://www.uno.edu/disability-services/; UC 260) each semester and follow their procedures for obtaining assistance.
Civil Engineering 2350
STATICS
Required

CATALOG DESCRIPTION
ENCE 2350 Statics 3 cr.
Vectors; two-dimensional and three-dimensional force systems; equilibrium; friction; centroids; mass moments of inertia; second moments of areas.

PREREQUISITES
MATH 2108 or 2111, and PHYS 1061

TEXTBOOKS AND OTHER MATERIAL
2. Moodle Online Course site, McGraw-Hill Connect, Adobe Connect

STUDENT LEARNING OBJECTIVES
After successfully completing this course each student will be able to:
1. Solve for the resultant of forces acting on a particle in 2 and 3 dimensional space.
2. Replace a given system of forces exerted on a rigid body by a simpler equivalent system.
3. Draw a free body diagram, determine whether a structure is properly supported, and if it is use the equilibrium equations to solve for unknown forces and reactions.
4. Solve for the internal forces that hold the two-force members of a statically determinate structure together using the method of joints and method of sections and the internal and unknown forces of frames and machines with multi-force members.
5. Determine and graphically represent shear and bending in beams.
6. Determine the centroid of an area or line and compute the area and volume of a surface of revolution.
7. Apply the parallel axis theorem to solve for the moment of inertia of an area.
8. Solve for the dry friction forces acting upon rigid bodies, structures, and belts passing over a cylindrical drum.

RELATIONSHIP OF COURSE TO PROGRAM OUTCOMES
a. An ability to apply knowledge of mathematics, science, and engineering
This course relates to outcome (a) because it represents an applied side of the subject matter acquired under the previous requirements in the areas of mathematics and science. The course introduces the students to basic and applied topics in sub-fields of stationary engineering systems, e.g. equilibrium of rigid bodies, analysis of structures, friction, centroid and moment of inertia.

e. An ability to identify, formulate, and solve engineering problems
This course relates to outcome (e) in that it develops the student’s knowledge and ability to formulate and solve engineering mechanics problems by application of the appropriate equilibrium equations. Students successfully completing this course also develop an understanding of the assumptions and limitations of the solution procedure as it relates to engineering systems.

PREPARED BY Gianna Cothren, Ph.D., P.E., Associate Professor 05/30/14
ENCE 2350 INTERNET COURSE GUIDE

STUDENT/INSTRUCTOR INTRODUCTIONS

The first thing you must do in Moodle is click Announcements/Instructor Student Introductions and reply to the post as a way for us to introduce ourselves. Also, indicate whether or you will be available on campus this semester or you will be online only.

STUDENT LEARNING PROCESS

This course is divided by time spent on each chapter of the adopted statics textbook by Beer and Johnston. Students will be expected to log on to Moodle 2-5 times a week for a MINIMUM of 5 hours per week (more if individually necessary) to review the material and receive homework assignments to be completed during the week. Virtual office hours will be available M, Tu, Th, and F from 12 – 1 PM during the lunch hour. All students must attend and participate a MINIMUM of 1 hour per week. Attendance will be checked. The general weekly layout is as follows:

- Read the current chapter in Beer and Johnston, 10th ed.
- Watch the online RECORDED LECTURE.
- Examine the CHAPTER SLIDE SET.
- Examine the chapter NOTEBOOK NOTES
- View the available recorded SOLVED PROBLEMS on Video solved by the instructor for the current section.
- Solve the assigned homework problems on the McGraw Hill CONNECT site and place a hard copy into your personal course folder. Submit answers online as requested in the Moodle/Assignments folder.
- Participate in the virtual classroom discussions each week. Every student must sign up for one specific day each week, but may participate as often as he/she wishes.
- Use the Moodle Discussion Board for additional assistance with homework problems.
- Examine the additional solved chapter problems on Moodle.
- Read the Chapter Summary
- Solve additional problems with book answers for extra practice.
- Take a possible weekly pop quiz on the current sections.
- Take the regularly scheduled exams.

It is IMPERATIVE that each student participate fully using the available resources listed above. You should know that an online course is about 2X more time intensive than a regular in-class course and you should be prepared to spend a minimum of 15 hours a week learning the material, practicing with homework, and preparing for exams. In addition to the weekly assignments and quizzes, students will take three proctored exams and a proctored comprehensive final exam. The course point system is setup so that the lowest grade can be dropped. Therefore, if the student performs satisfactorily on all tests, the final exam may be dropped. Students will submit their course folders at the time of the mid-term and final exams for additional homework points.
CHAPTER SLIDE SET

The chapter slide sets are published by McGraw Hill. Each chapter slide set will be available for student review. The online recorded lectures are based upon this slide set for enhanced instruction of the principles and/or examples. These slides are in the PowerPoint .ppt format.

NOTEBOOK NOTES

The notebook notes consist of scans of original instructor notes used for teaching Statics. These are handwritten notes along with worked examples for each chapter. The format is pdf. The online recorded lectures are based upon these notebook notes.

SOLVED PROBLEMS ON VIDEO

From time to time, the instructor will make additional video recorded problems available to supplement problem solving instruction.

HOMEWORK AND QUIZZES

Homework assignments will be administered through McGraw-Hill’s CONNECT. You are responsible for completing all homework assignments by the given deadline and placing a neat hand written copy in your course folder which will be turned in for review and graded twice during the semester. Timed pop quizzes will be taken and submitted online as well. These quizzes will be posted early in the week (Wed.) and will remain available through Friday. Students are only allowed to take a quiz one time so be sure you are prepared before entering the quiz.

EXAMS

There will be 3 proctored exams and a proctored comprehensive Final exam administered throughout the semester. Check the Moodle calendar or weekly block schedule for the exam schedule. All exams will be proctored at a selection of times and location which will be posted on Moodle or arranged by the student with a certified private proctor. *You must notify me during the first 2 weeks of classes if you plan to use a private proctor. Follow the instructions given in Course Information for setting up your own private proctor.*
COURSE FOLDER

You must maintain a three prong folder (the thin paper type) that contains your complete solutions to all of the assigned homework problems in numerical order labeled by week number, HW number, and date. You will be required to submit this folder near the time of the mid-term and final exam. The quality/neatness of your work will count toward your final grade. Homework in this folder must be written in pencil on engineering paper (green or gold). The format for problems solutions is as follows:

- Header: student name, chapter name and HW number, date
- Top right corner: Week #, HW#, page# / total pages
- Problem #
- Given: state the given information and draw a free body diagram (FBD)
- Required: state what parameters the problem will solve for
- Solution: write the complete solution showing all equations used and outline the final answer and units in a box

VIRTUAL CLASSROOM DISCUSSION

Classroom discussion using the Virtual Office on Adobe Connect via Moodle will be available during the lunch hour from 12-1 PM Monday, Tuesday, Thursday, and Friday or by request. Every student will be required to sign up for at least one virtual office hour and will be required to sign in and participate on that day each week. During this time, I will be available to answer questions using the chat and whiteboard tools. Additionally, sessions will be recorded for students who miss the session but would like to review the discussion. Since this is an internet course in which the class does not physically meet, the Virtual Classroom Discussion dialogue is meant to replace the class and office discussion. It is very IMPORTANT that you participate, especially if you are having difficulty understanding any of the topics.

DISCUSSION BOARD

Use the Discussion Board for Introductions, to get assistance with Homework problems, and to get help with Technical Difficulties. Students may also upload a scan or picture of handwritten homework in order to get feedback from the instructor on problems with incorrect solutions.

TEXTBOOK

Beer and Johnston, “Vector Mechanics for Engineers: Statics,” McGraw-Hill, 10th Ed. available at the UNO bookstore as well as the McGraw-Hill website and many other online sites. Students may elect to purchase a new textbook, borrow a used textbook, or signup for an electronic version. Also required is the McGraw Hill CONNECT access. The code should come with a new copy of the textbook or can be purchased separately at McGraw Hill. Students will find Connect registration information and a link for purchasing the hardcopy or electronic text and the Connect access in Moodle.

REQUIRED SUPPLIES
Calculator, straight edge, computer accounts, internet access, hard or electronic copy of the textbook and CONNECT access.

INSTRUCTOR/OFFICE HOURS

Dr. Cothren
Office: EN 823 (not available during summer semester)
Office Phone: 504-280-3158 (not available during summer semester)
Email: gcothren@uno.edu
Office times: Scheduled virtual classroom times, or by appointment

GRADING SCHEME / SCALE

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework / Quizzes</td>
<td>20%</td>
<td>A 90 – 100%</td>
</tr>
<tr>
<td>Course folder</td>
<td>10%</td>
<td>B 80 - 89</td>
</tr>
<tr>
<td>3 Exams / Final</td>
<td>70%</td>
<td>C 70 – 79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D 60 – 69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F below 60% is failing</td>
</tr>
</tbody>
</table>

ATTENDANCE POLICY

This is an Internet course thus physical attendance is not applicable. However, participation and progress will be monitored through Moodle. Weekly participation in virtual office hours is required and all assignments are due on time with a grade penalty for late work or non participation.

EQUIPMENT AND SOFTWARE REQUIRED

This is an Internet course and has some minimum requirements in order to take the course via the internet. For minimum requirements see http://www.uno.edu/globaluno/software-requirements.aspx
You will also need McGraw Hill CONNECT access.
ACADEMIC INTEGRITY
Academic integrity is fundamental to the process of learning and evaluating academic performance. Academic dishonesty will not be tolerated. Academic dishonesty includes, but is not limited to, the following: cheating, plagiarism, tampering with academic records and examinations, falsifying identity, and being an accessory to acts of academic dishonesty. Refer to the Student Code of Conduct for further information. The Code is available online at http://www.studentaffairs.uno.edu.

ACCOMMODATIONS FOR STUDENTS WITH DISABILITIES
It is University policy to provide, on a flexible and individualized basis, reasonable accommodations to students who have disabilities that may affect their ability to participate in course activities or to meet course requirements. Students with disabilities should contact the Office of Disability Services as well as their instructors to discuss their individual needs for accommodations. For more information, please go to http://www.ods.uno.edu.

STUDENT VERIFICATION PROCEDURES
To ensure academic integrity, all students enrolled in distance learning courses at the University of New Orleans may be required to participate in additional student identification procedures. At the discretion of the faculty member teaching the course, these measures may include on-campus proctored examinations, off-site or online proctored examinations, or other reasonable measures to ensure student identity. Authentication measures for this course are identified below and any fees associated are the responsibility of the student.

3 proctored exams and a proctored comprehensive Final exam

PROCTOR U STATEMENT
The University of New Orleans partners with Proctor U, a live, online proctoring service that allows students to complete exams from any location using a computer, webcam, and reliable internet connection. Proctor U information and fees may be found on the Global UNO website under online testing http://www.uno.edu/globaluno/online-learning.aspx

WEEKLY BLOCK SCHEDULE BELOW
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics To Cover</th>
<th>Tasks</th>
<th>HW/Quiz/Exam Assignments</th>
<th>Other</th>
</tr>
</thead>
</table>
| 1 | 6/2 | Ch.1: INTRODUCTION Principles 1.1–6 Fundamentals, Units, Method of Solution
Optional INTRODUCTION meeting Monday June 2 12-1 PM EN Auditorium | Read 2-13
Video Lecture 1
Notebook Notes
Order textbook or/smart book and Connect access | Sample Connect HW | Th Virtual Office 12-1 PM Required Attendance
6/5 Final date for adding/changing sections |
| 2 | 6/9 | Ch.2: STATICS OF PARTICLES
2.1–6 Addition and Resolution of Forces
2.7–8 Rectangular Components | Read 16-32
Video Lecture 2
Slides 1-4
Notebook Notes
Board Problems
Sample Problems | Connect HW (Due by Wed. 6pm)
Possible Quiz posted Wed. | M,T,Th,F Virtual Office 12-1PM |
| | | Ch.2: STATICS OF PARTICLES
2.9–11 Equilibrium of a Particle
2.12–14 Forces in Space
2.15 Equilibrium in Space | Read 35-59
Video Lecture 3
Slides 5-11
Notebook Notes
Board Problems
Sample Problems
Chapter Summary 64-66 | Connect HW (Due by Sun. 6pm) | |
| 3 | 6/16 | Ch.3: RIGID BODIES: EQUIVALENT SYSTEMS OF FORCES
3.1–8 Vector Product; Moment of a Force about a Point
3.9–11 Scalar Product; Moment of a Force about an Axis | Read 74-101
Video Lecture 4
Slides 1-13
Notebook Notes
Board Problems
Sample Problems | Connect HW (Due by Wed. 6pm)
Possible Quiz posted Wed. | M,T,Th,F Virtual Office 12-1PM
6/10 Drop/resign with NO “W” |
| | | Ch.3: RIGID BODIES: EQUIVALENT SYSTEMS OF FORCES
3.12–16 Couples
3.17–20 Equivalent Systems of Forces | Read 107-135
Video Lecture 5
Slides 14-19
Notebook Notes
Board Problems
Sample Problems
Suggested Practice Problems
Chapter Summary 146-150 | Connect HW (Due by Sun. 6pm) | |
<table>
<thead>
<tr>
<th>Date</th>
<th>Exam</th>
<th>Notes</th>
<th>Dates</th>
<th>Time</th>
<th>Location</th>
<th>Ch.</th>
<th>HW Due Date</th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/23 Mon.</td>
<td>Exam 1</td>
<td>6/23</td>
<td>Ch. 2-3</td>
<td>12-1:15 EN Bldg.</td>
<td>6/23 Exam 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.T,Th,F Virtual Office 12-1PM</td>
</tr>
<tr>
<td>Ch.4: EQUILIBRIUM OF RIGID BODIES</td>
<td>4.1–4 Equilibrium in Two Dimensions</td>
<td>Read 158-186 Video Lecture 6 Slides 1-7 Notebook Notes Board Problems Sample Problems</td>
<td></td>
<td>Connect HW (Due by Wed. 6pm)</td>
<td></td>
<td>Possible Quiz posted Wed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 Indeterminate Reactions; Partial Constraints</td>
<td>4.6–7 Two- and Three-Force Bodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch.4: EQUILIBRIUM OF RIGID BODIES</td>
<td>4.8–9 Equilibrium in Three Dimensions</td>
<td>Read 191-198 Video Lecture 7 Ch 4 Slides 8-10; Notebook Notes Board Problems Sample Problems Chapter Summary 211-213</td>
<td></td>
<td>Connect HW (Due by Sun. 6pm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M.T,Th,F Virtual Office 12-1PM</td>
</tr>
<tr>
<td>6/30</td>
<td>Ch.6: ANALYSIS OF STRUCTURES</td>
<td>Read 285-296 Video Lecture 8 Ch 6 Slides 1-15 Notebook Notes Read 303-309 Notebook Notes Board Problems Sample Problems Suggested Practice Problems</td>
<td></td>
<td>Connect HW (Due by Wed. 6pm)</td>
<td></td>
<td>Possible Quiz posted Wed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1–4 Trusses by Method of Joints</td>
<td>6.5 Joints under Special Loading Conditions</td>
<td>6.7 Trusses by Method of Sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch.6: ANALYSIS OF STRUCTURES</td>
<td>6.9–11 Frames</td>
<td>Read 315-334 Video Lecture 9 Slides 9-13 Notebook Notes Board Problems Sample Problems Suggested Practice Problems Chapter Summary 343-345</td>
<td></td>
<td>Connect HW (Due by Sun. 6pm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.12 Machines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/7 Mon.</td>
<td>Exam 2</td>
<td>12-1:15 EN Bldg.</td>
<td>Ch. 4 and 6</td>
<td></td>
<td>Exam 2 - turn in course folder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Chapter</td>
<td>Sections</td>
<td>Reading Material</td>
<td>Homework Due</td>
<td>Additional Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7/7</td>
<td>Ch.7: FORCES IN BEAMS AND CABLES</td>
<td>7.1–2 Internal Forces in Members, 7.3–5 Shear and Moment Diagrams by FB Diagram</td>
<td>Read 354-368 Video Lecture 10 Slides 1-7 Notebook Notes 1-9 Board Problems Sample Problems 158,161,163 Suggested Practice Problems Chapter Summary 402-403</td>
<td>Connect HW (Due by Wed. 6pm) Possible Quiz posted Wed.</td>
<td>M,T,Th,F Virtual Office 12-1PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/14</td>
<td>Ch.5: CENTROIDS AND CENTERS OF GRAVITY</td>
<td>5.1–5 Centroids and First Moments of Areas and Lines</td>
<td>Read 220-231 Video Lecture 11 Slides 1-5 Notebook Notes Board Problems Sample Problems</td>
<td>Connect HW (Due by Sun. 6pm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7/21</td>
<td>Ch.9: MOMENTS OF INERTIA</td>
<td>9.1–5 Moments of Inertia of Areas, 9.6–7 Composite Areas</td>
<td>Read 472-479 Video Lecture 13 Slides 1-5 Notebook Notes Board Problems Sample Problems Suggested Practice Problems</td>
<td>Connect HW (Due by Sun. 6pm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mon.</td>
<td>Exam 3</td>
<td></td>
<td>12-1:15 EN Bldg.</td>
<td></td>
<td>Ch. 7, 5, 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Topic</td>
<td>Reading</td>
<td>Homework</td>
<td>Quiz</td>
<td>Office Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7/21</td>
<td>Ch.9: MOMENTS OF INERTIA 9.11–15 Moments of Inertia of Masses</td>
<td>Read 483-491, 512-523 Video Lecture 14 Slides 10-12 Notebook Notes Board Problems Sample Problems Suggested Practice Problems Chapter Summary Connect HW (Due by Wed. 6pm) Possible Quiz posted Wed.</td>
<td>M,T,Th,F Virtual Office 12-1PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ch.8: FRICTION 8.1–4 Laws of Friction and Applications 8.5–6 Wedges and Screws 8.10 Belt Friction</td>
<td>Read 412-435, 450-455 Video Lecture 15 Slides 1-10 Notebook Notes 1-7 Board Problems Sample Problems 150,154, 155,159,161 Chapter Summary 461-463 Connect HW (Due by Sun. 6pm) Quiz posted Fri.</td>
<td>7/25 Last day of classes Upload course folder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/28 Mon.</td>
<td>Final Exam</td>
<td></td>
<td>Comprehensive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>