Degrees: B.S. in Mechanical Engineering

I. ENROLLMENT AND COMPLETERS

Undergraduate:

Pre Mechanical Engineering:

<table>
<thead>
<tr>
<th></th>
<th>Enrollment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Completers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freshmen</td>
<td>Sophomore</td>
<td>Junior</td>
<td>Senior</td>
<td>Post-Bacc.</td>
<td>Total</td>
<td>Completers</td>
</tr>
<tr>
<td>Summer '13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall '13</td>
<td>69</td>
<td>48</td>
<td>35</td>
<td>20</td>
<td>20</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Spring '14</td>
<td>44</td>
<td>45</td>
<td>23</td>
<td>17</td>
<td>16</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BS Mechanical Engineering:

<table>
<thead>
<tr>
<th></th>
<th>Enrollment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Completers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freshmen</td>
<td>Sophomore</td>
<td>Junior</td>
<td>Senior</td>
<td>Post-Bacc.</td>
<td>Total</td>
<td>Completers</td>
</tr>
<tr>
<td>Summer '13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Fall '13</td>
<td>5</td>
<td>9</td>
<td>23</td>
<td>85</td>
<td>15</td>
<td>137</td>
<td>23</td>
</tr>
<tr>
<td>Spring '14</td>
<td>5</td>
<td>14</td>
<td>28</td>
<td>91</td>
<td>17</td>
<td>155</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>
II. DESCRIBE KEY ACCOMPLISHMENTS

Graduation Numbers:

The B.S. in Mechanical Engineering continues to award degrees at a historically high rate as shown in the following figure below. Number of degrees awarded exceed even pre-Katrina levels.

![Graph showing graduation numbers from 2003 to 2014.]

Professional Society Involvement in Curriculum:

Strong interactions between the Department of Mechanical Engineering at UNO and professional societies in the oil and gas industry – the American Association for Drilling Engineers (AADE) and the Society for Petroleum Engineers (SPE) – have resulted in expanded curricular offerings and other benefits to students including seminars by guest speakers, tours of oil rigs, and practice interviews. For the past several semesters, these organizations have assisted in designing elective courses, financing adjunct instructors, and identifying candidates to teach the courses. Courses, offered over the past academic year have included ENME 4765 Introduction to Petroleum Engineering and Well Drilling and Completion Design, offered as as ‘Special Topics in Mechanical Engineering’. Similar involvement by the National Association of Corrosion Engineers (NACE) has resulted in courses offered in that field. These organizations have contributed > $25k in support of these curricular efforts over the past year. In addition, these organizations have provided > $10k in scholarships to our students. NACE also operates a workshop for high school teachers aimed at improving instruction in materials science education. This course is held at UNO using the department’s materials laboratory. It offers exposure for the college with STEM teachers and interactions with professionals in fields related to materials and corrosion engineering.

III. ATTACH THE ANNUAL INSTITUTIONAL EFFECTIVENESS REPORT FROM WEAVE AND THE ANNUAL FACULTY ACTIVITY REPORT FROM FACULTY 180
Mission / Purpose
The department has a goal of producing well-educated mechanical engineers, who will be successfully employed at the regional and national levels, or who will continue on with graduate studies. In particular the department’s goal is to supply the greater New Orleans area, the state of Louisiana, and the region with competent mechanical engineers, while addressing the special needs of the oil (onshore and offshore), petrochemical/process, aerospace, and manufacturing industries. In support of the urban mission of the University, the undergraduate program has particular emphasis on serving non-traditional as well as traditional students. The department of mechanical engineering will fully employ emerging technologies in the classroom and research settings, will establish bilateral relationships with industry, and will foster personal discovery. The department will continue its commitment to scholarship and research and the development of graduate programs.

Strategic Plan Goals

SP Goal 1: Provide high quality undergraduate educational programs
The department will provide high quality educational programs and learning experiences for undergraduate students in the Mechanical Engineering Bachelor of Science program.

SP Goal 2: Provide high quality graduate educational programs
The department will provide high quality educational and research programs and learning experiences for graduate students to support the M.S. and Ph.D. programs in the College of Engineering.

SP Goal 3: Community outreach
The department will be committed to community outreach and will provide educational opportunities consistent with the needs of regional industries.

Other Outcomes/Objectives, with Any Associations and Related Measures, Targets, Findings, and Action Plans

O/O 1: Conduct student assessments
Conduct continuous assessments and improvements to produce graduates with a proficiency in the general areas of mechanical engineering consistent with ABET criteria. Maintain ABET assessment committees

University Strategic Plan Associations
University of New Orleans
2 Students

Related Measures
M 1: Student assessments
Student assessments
Source of Evidence: Evaluations
Target:
Greater than 70% of SACS and ABET student outcome criteria met.
Finding (2013-14) - Target: Not Met
In most recent assessments: 9/14 ABET and 3/5 SACS student outcome criteria met. (63%) Target not met.

O/O 2: Increase student participation in research
Increase participation of undergraduates in independent research projects

University Strategic Plan Associations
University of New Orleans
6 Research

Related Measures
M 2: Pursue funding and identify interest
Pursue funding for undergraduate research Identify students and faculty interested in independent research projects
Source of Evidence: Activity volume
Target:
By Fall 2015, have institutional support issues addressed. By Fall 2015 have an organized, funded program for undergraduate research, $176,000 per COE minimum needs document for ABET required institutional support $6,000/yr/undergrad reseracher
Finding (2013-14) - Target: Not Met
No progress on COE plan to have organized undergraduate research funding. Student participation in research through ENME 3092 has been constant; no increase.

O/O 3: Increase number of graduate students
Increase number of graduate students

University Strategic Plan Associations
University of New Orleans
2 Students

O/O 4: Teaching Assistants
By Fall 2014, increase number of supported graduate students compared to 2012.

University Strategic Plan Associations
University of New Orleans
2 Students

Related Measures
M 3: Tally number of positions
Tally number of positions
Source of Evidence: Administrative measure - other
Target: $14,000 per TA – funded by the university and included in the mechanical engineering budget to facilitate planning. By Fall 2014, increase number of supported graduate students compared to 2012.
Finding (2013-14) - Target: Met
2013/14: 0; 2014/15: 2. This is per preliminary budget. If this remains intact, target is met.

O/O 5: Promote thesis option
Promote the thesis option among M.S. students

University Strategic Plan Associations
University of New Orleans
2 Students

Related Measures
M 4: Tally student numbers
Tally number of thesis option master's students
Source of Evidence: Administrative measure - other
Target: Increase fraction of M.S. students in thesis option.
Finding (2013-14) - Target: Met
75% of M.S. students were thesis option in 2013/14. Up from 60%. Target met, but numbers are low (4 total).

O/O 6: Local industry guides course offerings
Utilize strong interactions with local industry (e.g., advisory board, professional organizations) to guide course offerings.
Meet with organizations to set goals, identify funding sources, instructors

University Strategic Plan Associations
University of New Orleans
5 Community

Related Measures
M 5: Course offerings
Track additional course offerings
Source of Evidence: Administrative measure - other
Target: By Fall 2013, have Petroleum Engineering course in catalog; by Fall 2015, have additional courses prepared, offered as special topics $8000 per instructor
Finding (2013-14) - Target: Met
ENME 4765 Introduction to Petroleum Engineering is in the catalog. A second course: Well Drilling and Completion Design has been offered. NACE - the National Association of Corrosion Engineers is pursuing similar support for courses in their field.

Detailed Assessment Report
2013-14 Mechanical Engineering, B.S.
As of: 9/19/2014 06:46 PM CST
(Includes those Action Plans with Budget Amounts marked One-Time, Recurring, No Request.)

Mission / Purpose
The department has a goal of producing well-educated mechanical engineers, who will be successfully employed at the regional and national levels, or who will continue on with graduate studies. In particular, the department's goal is to supply the greater New Orleans area, the state of Louisiana, and the region with competent mechanical engineers, while addressing the special needs of the oil (onshore and offshore), petrochemical/process, aerospace, and manufacturing industries. In support of the urban mission of the University, the undergraduate program has particular emphasis on serving non-traditional as well as traditional students. The department of mechanical engineering will fully employ emerging technologies in the classroom and research settings, will establish bilateral relationships with industry, and will foster personal discovery. The department will continue its commitment to scholarship and research and the development of graduate programs.

Student Learning Outcomes/Objectives, with Any Associations and Related Measures, Targets, Findings, and Action Plans
SLO 1: Knowledge of math, science & engineering
Graduates will demonstrate an ability to apply knowledge of mathematics, science and engineering

Connected Document
CID Outcome 1

Related Measures
M 1: AM section
FE scores in Math/Science/Engineering topics – AM section.
Source of Evidence: Standardized test of subject matter knowledge

Target:
80% will achieve a passing score.

Finding (2013-14) - Target: Not Met
63% pass rate on most 2013 results. National pass rate ~ 80%. We require every student to take exam. Therefore being near the national average is considered positive. 63% vs. 80% is below expectations. More detailed analysis using departmental rubrics attached.

Related Action Plans (by Established cycle, then alpha):
Monitor FE results in Mechanics of Materials
An action item from the Spring 2012 assessment cycle was to monitor performance on the FE exam in Mechanics of Materials to determine whether decreased FE scores continue.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Knowledge of math, science & engineering
Measure: AM section | Outcome/Objective: Knowledge of math, science & engineering

Implementation Description: Topic-specific analysis of FE results is standard part of program assessment process for this outcome
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee

Additional Resources:
Review possible course-specific prerequisites
The program had previously implemented a blanket requirement for C or better grades in all Math and Physics courses. This was eliminated after the Spring 2012 review cycle due to logistical problems with implementation. Instead, the possible implementation of course-specific prerequisites (e.g. C or better in Math 2112 for ENME 2750) was put under review.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Knowledge of math, science & engineering
Measure: AM section | Outcome/Objective: Knowledge of math, science & engineering

Implementation Description: Evaluation of student performance in individual courses will be evaluated in the context of preparation in math and physics. Topic-specific analysis of FE exam results will be used to assess shortcomings.
Projected Completion Date: 12/2014
Responsible Person/Group: Course coordinator for each required ENME course; final assessment by Outcomes Committee

Additional Resources:

M 5: Alumni/Industry surveys
Alumni/Industry surveys are performed biannually and include rating UNO ME graduates' abilities related to each outcome on a scale of 1-5.

Source of Evidence: Alumni survey or tracking of alumni achievements

Target:
80% will score at level of "Criteria Exceeded" (4 of 5) or above.

Finding (2013-14) - Target: Met
92% of alumni rated at 4 or above. 87.5% of industry representatives rated at 4 or above.

Related Action Plans (by Established cycle, then alpha):
Monitor FE results in Mechanics of Materials
An action item from the Spring 2012 assessment cycle was to monitor performance on the FE exam in Mechanics of Materials to determine whether decreased FE scores continue.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Knowledge of math, science & engineering
Measure: AM section | Outcome/Objective: Knowledge of math, science & engineering

Implementation Description: Topic-specific analysis of FE results is standard part of program assessment process for this outcome
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources:

Review possible course-specific prerequisites
The program had previously implemented a blanket requirement for C or better grades in all Math and Physics courses. This was eliminated after the Spring 2012 review cycle due to logistical problems with implementation. Instead, the possible implementation of course-specific prerequisites (e.g., C or better in Math 2112 for ENME 2750) was put under review.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Knowledge of math, science & engineering

Implementation Description: Evaluation of student performance in individual courses will be evaluated in the context of preparation in math and physics. Topic-specific analysis of FE exam results will be used to assess shortcomings.

Projected Completion Date: 12/2014
Responsibility Person/Group: Course coordinator for each required ENME course; final assessment by Outcomes Committee
Additional Resources:

SLO 2: Experiments & analyze data
Graduates will demonstrate an ability to design and conduct experiments, as well as to analyze and interpret data

Connected Document
CID Outcome 2

Related Measures

M 2: Assessment of ability
Assessment of ability using outcome specific departmental rubrics applied to assignments in ENME 3716 (O.2) and ENME 3780 (O.5).

Source of Evidence: Academic direct measure of learning - other

Target:
80% will score at "Criteria Met" or above on the rubric.

Finding (2013-14) - Target: Met
96% scored at "acceptable" or above. The ability is assessed by rating laboratory reports in ENME 3716 Fluid Mechanics Laboratory. The most recent results (Spring 2012) are attached.

Connected Document
Rubric Outcome 2

Related Action Plans (by Established cycle, then alpha):

Improve ENME 2711
The summative assessment indicates the students are demonstrating abilities at a level warranting a rating of 4 - criteria exceeded. However, the formative assessment, including review of content in all lab courses, indicates that the course content and student requirements ENME 2711 require improvement. Based on action items in the 2012 assessment cycle, a review of ENME 2711 was be performed. Potential improvements including new equipment, new lab manuals, etc. were recommended. The laboratory has been changed to also support ENME 2785 Manufacturing (Catalog description and prerequisites changed, effective Fall 2012). Lab manuals have been rewritten, but changes are still in progress.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: High

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Experiments & analyze data
Measure: Assessment of ability | Outcome/Objective: Experiments & analyze data

Implementation Description: Syllabus, lab manuals, equipment being revamped.

Projected Completion Date: 12/2014
Responsibility Person/Group: Materials/Manufacturing faculty (Hui, Schilling, Verges, Chakravarty)
Additional Resources: Equipment purchased as identified. The following equipment has been purchased using salary release, etc., over the past 2 years: Rockwell hardness; Creep test with data acquisition system; strain gauge test bench with data acquisition. Requested: metallurgical microscope, 3-D printer
Budget Amount Requested: $27,000.00 (one time)

M 5: Alumni/Industry surveys
Alumni/Industry surveys are performed biannually and include rating UNO ME graduates’ abilities related to each outcome on a scale of 1-5.

Source of Evidence: Alumni survey or tracking of alumni achievements

Target:
80% will score at level of "Criteria Exceeded" (4 of 5) or above.

Finding (2013-14) - Target: Partially Met
84% of alumni rated at 4 or above, 75% of industry representatives rated at 4 or above.

Related Action Plans (by Established cycle, then alpha):

Improve ENME 2711
The summative assessment indicates the students are demonstrating abilities at a level warranting a rating of 4 - criteria exceeded. However, the formative assessment, including review of content in all lab courses, indicates that the course content and student requirements ENME 2711 require improvement. Based on action items in the 2012 assessment cycle, a review of ENME 2711 was be performed. Potential improvements including new equipment, new lab manuals, etc. were recommended. The laboratory has been changed to also support ENME 2785 Manufacturing (Catalog description and prerequisites changed, effective Fall 2012). Lab manuals have been rewritten, but changes are still in progress.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: High

Relationships (Measure | Outcome/Objective):
- Measure: Alumni/Industry surveys | Outcome/Objective: Experiments & analyze data
- Measure: Assessment of ability | Outcome/Objective: Experiments & analyze data

Implementation Description: Syllabus, lab manuals, equipment being revamped.
Projected Completion Date: 12/2014
Responsible Person/Group: Materials/Manufacturing faculty (Hui, Schilling, Verges, Chakravarty)
Additional Resources: Equipment purchases as identified. The following equipment has been purchased using salary release, etc., over the past 2 years: Rockwell hardness; Creep test with data acquisition system; strain gauge test bench with data acquisition. Requested: metallurgical microscope, 3-D printer
Budget Amount Requested: $27,000.00 (one time)

SLO 3: Design a system or process
Graduates will demonstrate an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

Connected Document
CID Outcome 3

Related Measures

M 3: Design jury assessment
Capstone project design jury assessment using a departmental rubric.
Source of Evidence: Capstone course assignments measuring mastery
Target:
80% will achieve a score of “Criteria Met” or above.
Finding (2013-14) - Target: Met
80% scored at "Criteria Met" or above. The ability is assessed by having an external design jury rate capstone design projects in ENME 3733 Machine Design. The most recent results are attached.

Connected Document
Rubric Outcome 3

Related Action Plans (by Established cycle, then alpha):

Review design sequence
The design sequence, which includes capstone design courses and 'secondary' design courses is continuously reviewed. A specific action item from the 2012 assessment cycle was to consider additional design project(s) for ENME 1781, the introductory design course.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
- Measure: Alumni/Industry surveys | Outcome/Objective: Design a system or process
- Measure: Design jury assessment | Outcome/Objective: Design a system or process

Implementation Description: Course content in ENME 1781 is being reviewed by the Outcomes committee. Data in the ABET course binders (which include examples of all student work) are being used for the assessment.
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources:

M 5: Alumni/Industry surveys
Alumni/Industry surveys are performed biannually and include rating UNO ME graduates' abilities related to each outcome on a scale of 1-5.
Source of Evidence: Alumni survey or tracking of alumni achievements
Target:
80% will score at level of "Criteria Exceeded" (4 of 5) or above.
Finding (2013-14) - Target: Not Met
76% of alumni rated at 4 or above. 38% of industry representatives rated at 4 or above.

Related Action Plans (by Established cycle, then alpha):

Review design sequence
The design sequence, which includes capstone design courses and 'secondary' design courses is continuously reviewed. A specific action item from the 2012 assessment cycle was to consider additional design project(s) for ENME 1781, the introductory design course.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Design a system or process
Measure: Design jury assessment | Outcome/Objective: Design a system or process

Implementation Description: Course content in ENME 1761 is being reviewed by the Outcomes committee. Data in the ABET course binders (which include examples of all student work) are being used for the assessment.
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources:

SLO 4: Identify, formulate, and solve
Graduates will demonstrate an ability to identify, formulate, and solve engineering problems

Connected Document
CID Outcome 4

Related Measures

M 4: PM section
FE scores in Engineering topics – PM section.
Source of Evidence: Standardized test of subject matter knowledge
Target: 80% will achieve a score above (~.50) of national average

Finding (2013-14) - Target: Not Met
63% pass rate on most 2013 results. National pass rate ~ 80%. We require every student to take exam. Therefore being near the national average is considered positive, 63% vs. 80% is below expectations. More detailed analysis using departmental rubrics attached.

Related Action Plans (by Established cycle, then alpha):
Perform topic-specific evaluation of FE results
Topic-specific evaluation of FE results is a regular part of the ABET assessment process. This is done on a 2-year cycle. The last evaluation in Spring 2012 called for not action; results were very good. The pass rate observed in 2013 is below expectations. The full evaluation should be performed in Spring 2014.
Established in Cycle: 2013-14
Implementation Status: Planned
Priority: Hgh

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Identify, formulate, and solve
Measure: PM section | Outcome/Objective: Identify, formulate, and solve

Implementation Description: Perform topic-specific evaluation to identify areas for improvement
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources: -

M 5: Alumni/Industry surveys
Alumni/Industry surveys are performed biannually and include rating UNO ME graduates' abilities related to each outcome on a scale of 1-5.
Source of Evidence: Alumni survey or tracking of alumni achievements
Target: 80% will score at level of “Criteria Exceeded” (4 of 5) or above.

Finding (2013-14) - Target: Partially Met
92% of alumni rated at 4 or above. 75% of industry representatives rated at 4 or above.

Related Action Plans (by Established cycle, then alpha):
Perform topic-specific evaluation of FE results
Topic-specific evaluation of FE results is a regular part of the ABET assessment process. This is done on a 2-year cycle. The last evaluation in Spring 2012 called for not action; results were very good. The pass rate observed in 2013 is below expectations. The full evaluation should be performed in Spring 2014.
Established in Cycle: 2013-14
Implementation Status: Planned
Priority: Hgh

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Identify, formulate, and solve
Measure: PM section | Outcome/Objective: Identify, formulate, and solve

Implementation Description: Perform topic-specific evaluation to identify areas for improvement
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources: -

SLO 5: Techniques, skills, and modern engineering tools
Graduates will demonstrate an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Connected Document
CID Outcome 5
Related Measures

M 2: Assessment of ability
Assessment of ability using outcome specific departmental rubrics applied to assignments in ENME 3716 (O.2) and ENME 3780 (O.5).
Source of Evidence: Academic direct measure of learning - other

Target:
80% will score at “Criteria Met” or above on the rubric.

Finding (2013-14) - Target: Met
93% scored at “acceptable” or above. The ability is assessed by rating CAD/FEA problem on the Final Exam in ENME-3785 Introduction to Computational Solid Mechanics. Recent results are attached.

Connected Document
Rubric Outcome 5

Related Action Plans (by Established cycle, then alpha):

Monitor use of computational tools in capstone design projects
During the Spring 2012 assessment cycle, a curriculum change was made requiring all students take either ENME 3780 Computational Solid Mechanics or ENME 4728 Computational Fluid Mechanics. These courses include introduction to the finite element methods and use of commercial software for advanced engineering analysis. The impact of this change should be monitored. Capstone design projects in ENME 3733 and 3773 will be monitored for increased use of these computational tools.

Established in Cycle: 2013-14
Implementation Status: Planned
Priority: Medium

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Techniques, skills, and modern engineering tools
Measure: Assessment of ability | Outcome/Objective: Techniques, skills, and modern engineering tools

Implementation Description: Instructors for 3733 and 3773 will monitor the use of computational tools in design projects. Data on the number of students incorporating computational tools in the analysis and the level of analysis will be documented in the ABET course binders for review. The expectation is that computational content will increase.

Projected Completion Date: 05/2014
Responsible Person/Group: Capstone course instructors; Outcomes Committee
Additional Resources: -

M 5: Alumni/Industry surveys
Alumni/Industry surveys are performed biannually and include rating UNO ME graduates' abilities related to each outcome on a scale of 1-5.

Source of Evidence: Alumni survey or tracking of alumni achievements

Target:
80% will score at level of “Criteria Exceeded” (4 of 5) or above.

Finding (2013-14) - Target: Partially Met
76% of alumni rated at 4 or above. 88% of industry representatives rated at 4 or above.

Related Action Plans (by Established cycle, then alpha):

Monitor use of computational tools in capstone design projects
During the Spring 2012 assessment cycle, a curriculum change was made requiring all students take either ENME 3780 Computational Solid Mechanics or ENME 4728 Computational Fluid Mechanics. These courses include introduction to the finite element methods and use of commercial software for advanced engineering analysis. The impact of this change should be monitored. Capstone design projects in ENME 3733 and 3773 will be monitored for increased use of these computational tools.

Established in Cycle: 2013-14
Implementation Status: Planned
Priority: Medium

Relationships (Measure | Outcome/Objective):
Measure: Alumni/Industry surveys | Outcome/Objective: Techniques, skills, and modern engineering tools
Measure: Assessment of ability | Outcome/Objective: Techniques, skills, and modern engineering tools

Implementation Description: Instructors for 3733 and 3773 will monitor the use of computational tools in design projects. Data on the number of students incorporating computational tools in the analysis and the level of analysis will be documented in the ABET course binders for review. The expectation is that computational content will increase.

Projected Completion Date: 05/2014
Responsible Person/Group: Capstone course instructors; Outcomes Committee
Additional Resources: -

Details of Action Plans for This Cycle (by Established cycle, then alpha)

Improve ENME 2711
The summative assessment indicates the students are demonstrating abilities at a level warranting a rating of 4 — criteria exceeded. However, the formative assessment, including review of content in all lab courses, indicates that the course content and student requirements ENME 2711 require improvement. Based on action items in the 2012 assessment cycle, a review of ENME 2711 was be performed. Potential improvements including new equipment, new lab manuals, etc. were recommended. The laboratory has been changed to also support ENME 2785 Manufacturing (Catalog description and pre-requisites changed, effective Fall 2012). Lab manuals have been rewritten, but changes
are still in progress.

Established In Cycle: 2013-14
Implementation Status: In-Progress
Priority: High

Relationships (Measure | Outcome/Objective):
 Measure: Alumni/Industry surveys | Outcome/Objective: Experiments & analyze data
 Measure: Assessment of ability | Outcome/Objective: Experiments & analyze data

Implementation Description: Syllabus, lab manuals, equipment being revamped.
Projected Completion Date: 12/2014

Responsible Person/Group: Materials/Manufacturing faculty (Hui, Schilling, Verges, Chakravarty)
Additional Resources: Equipment purchases as identified. The following equipment has been purchased using salary release, etc., over the past 2 years: Rockwell hardness; Creep test with data acquisition system; strain gauge test bench with data acquisition. Requested: metallurgical microscope, 3-D printer
Budget Amount Requested: $27,000.00 (one time)

Monitor FE results in Mechanics of Materials
An action item from the Spring 2012 assessment cycle was to monitor performance on the FE exam in Mechanics of Materials to determine whether decreased FE scores continue.

Established In Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
 Measure: Alumni/Industry surveys | Outcome/Objective: Knowledge of math, science & engineering

Implementation Description: Topic-specific analysis of FE results is standard part of program assessment process for this outcome
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources: -

Monitor use of computational tools in capstone design projects
During the Spring 2012 assessment cycle, a curriculum change was made requiring all students take either ENME 3780 Computational Solid Mechanics or ENME 4723 Computational Fluid Mechanics. These courses include introduction to the finite element methods and use of commercial software for advanced engineering analysis. The impact of this change should be monitored. Capstone design projects in ENME 3733 and 3773 will be monitored for increased use of these computational tools.

Established In Cycle: 2013-14
Implementation Status: Planned
Priority: Medium

Relationships (Measure | Outcome/Objective):
 Measure: Alumni/Industry surveys | Outcome/Objective: Techniques, skills, and modern engineering tools

Implementation Description: Instructors for 3733 and 3773 will monitor the use of computational tools in design projects. Data on the number of students incorporating computational tools in the analysis and the level of analysis will be documented in the ABET course binders for review. The expectation is that computational content will increase.
Projected Completion Date: 05/2014
Responsible Person/Group: Capstone course instructors; Outcomes Committee
Additional Resources: -

Perform topic-specific evaluation of FE results
Topic-specific evaluation of FE results is a regular part of the ABET assessment process. This is done on a 2-year cycle. The last evaluation in Spring 2012 called for not action; results were very good. The pass rate observed in 2013 is below expectations. The full evaluation should be performed in Spring 2014.

Established In Cycle: 2013-14
Implementation Status: Planned
Priority: High

Relationships (Measure | Outcome/Objective):
 Measure: Alumni/Industry surveys | Outcome/Objective: Identify, formulate, and solve
 Measure: PM section | Outcome/Objective: Identify, formulate, and solve

Implementation Description: Perform topic-specific evaluation to identify areas for improvement
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources: -

Review design sequence
The design sequence, which includes capstone design courses and ‘secondary’ design courses is continuously reviewed. A specific action item from the 2012 assessment cycle was to consider additional design project(s) for ENME 1781, the introductory design course.

Established In Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
 Measure: Alumni/Industry surveys | Outcome/Objective: Design a system or process
 Measure: Design jury assessment | Outcome/Objective: Design a system or process

Implementation Description: Course content in ENME 1781 is being reviewed by the Outcomes committee. Data in the ABET course binders (which include examples of all student work) are being used for the assessment.
Projected Completion Date: 05/2014
Responsible Person/Group: Outcomes Committee
Additional Resources: -

Review possible course-specific prerequisites
The program had previously implemented a blanket requirement for C or better grades in all Math and Physics courses. This was eliminated after the Spring 2012 review cycle due to logistical problems with implementation. Instead, the possible implementation of course-specific prerequisites (e.g. C or better in Math 2112 for ENME 2750) was put under review.

Established in Cycle: 2013-14
Implementation Status: In-Progress
Priority: Medium

Relationships (Measure | Outcome/Objective):
 Measure: Alumni/Industry surveys | Outcome/Objective: Knowledge of math, science & engineering

Implementation Description: Evaluation of student performance in individual courses will be evaluated in the context of preparation in math and physics. Topic-specific analysis of FE exam results will be used to assess shortcomings.

Projected Completion Date: 12/2014
Responsible Person/Group: Course coordinator for each required ENME course; final assessment by Outcomes Committee
Additional Resources: -
Teaching Activities

<table>
<thead>
<tr>
<th></th>
<th>Credit Hours</th>
<th>Lecture Hours</th>
<th>Lab Hours</th>
<th>Teaching Load</th>
<th>Student Credit Hours</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engg.</td>
<td>212</td>
<td>0</td>
<td>0</td>
<td>212</td>
<td>3950</td>
<td>1374</td>
</tr>
<tr>
<td>Akhriz, Karim</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>412</td>
<td>174</td>
</tr>
<tr>
<td>Chakraverty, Uttam</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>304</td>
<td>112</td>
</tr>
<tr>
<td>Guillot, Martin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hall, Carrie</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>463</td>
<td>201</td>
</tr>
<tr>
<td>Herrington, Paul</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>318</td>
<td>106</td>
</tr>
<tr>
<td>Hul, David</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>306</td>
<td>130</td>
</tr>
<tr>
<td>Loiacono, Nick</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>303</td>
<td>101</td>
</tr>
<tr>
<td>Pearson, Randy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Richard, Francis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schilling, Paul</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>628</td>
<td>210</td>
</tr>
<tr>
<td>St Cyr II, William</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>240</td>
<td>80</td>
</tr>
<tr>
<td>Verges, Melody</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wang, Ting</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>287</td>
<td>99</td>
</tr>
<tr>
<td>Whitley, Norman</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>577</td>
<td>127</td>
</tr>
</tbody>
</table>

Scholarly Activities

<table>
<thead>
<tr>
<th></th>
<th>Book</th>
<th>Case Study</th>
<th>Chapter</th>
<th>Creative Performance</th>
<th>Creative Product</th>
<th>Journal Publicat</th>
<th>Other Teach</th>
<th>Patent</th>
<th>Poster Presentation</th>
<th>Presentation</th>
<th>Proceedings Publicat</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engg.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Akhriz, Karim</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Chakraverty, Umm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Guillot, Martin</td>
<td>0</td>
</tr>
<tr>
<td>Hall, Carrie</td>
<td>0</td>
</tr>
<tr>
<td>Herrington, Paul</td>
<td>0</td>
</tr>
<tr>
<td>Hul, David</td>
<td>0</td>
</tr>
<tr>
<td>Loiacono, Nick</td>
<td>0</td>
</tr>
<tr>
<td>Pearson, Randy</td>
<td>0</td>
</tr>
<tr>
<td>Richard, Francis</td>
<td>0</td>
</tr>
<tr>
<td>Schilling, Paul</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>St Cyr II, William</td>
<td>0</td>
</tr>
<tr>
<td>Verges, Melody</td>
<td>0</td>
</tr>
<tr>
<td>Wang, Ting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Whitley, Norman</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Activities

<table>
<thead>
<tr>
<th></th>
<th>Grants</th>
<th>Thesis/Dissertation Committee Service</th>
<th>Professional Service</th>
<th>Institutional Service</th>
<th>Community Service</th>
<th>Other Professional Accomplishments</th>
<th>Professional Development</th>
<th>Curriculum Vitae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engg.</td>
<td>5</td>
<td>20</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Akhriz, Karim</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chakraverty, Umm</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Guillot, Martin</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Hall, Carrie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Herrington, Paul</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hul, David</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Loiacono, Nick</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pearson, Randy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Richard, Francis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Schilling, Paul</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>St Cyr II, William</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Verges, Melody</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wang, Ting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Whitley, Norman</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>